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Abstract—Edge-assisted visual SLAM stands as a pivotal
enabler for emerging mobile applications, such as search-and-
rescue, smart logistics, and industrial inspection. Limited by the
computing capability of lightweight mobile devices like MAVs,
current innovations balance system accuracy and efficiency by
allocating lightweight and time-sensitive tracking tasks to mobile
devices, while offloading the more resource-intensive yet delay-
tolerant map optimization tasks to the edge. However, our pilot
study in a large-scale oil field reveals several limitations of
such a tracking-optimization decoupled paradigm, arising due
to the disruption of inter-dependencies between the two tasks
concerning data, resources, and threads.

In this paper, we design and implement edgeSLAM2, an
innovative system that reshapes the edge-assisted visual SLAM
paradigm by tightly integrating tracking and partial-yet-crucial
optimization on mobile. edgeSLAM2 harnesses the hierarchical
and heterogeneous computing units offered by the latest com-
mercial systems-on-chip (SoCs) to enhance the computational
capacity of mobile devices, which in turn, allows edgeSLAM2
to design a suit of novel algorithms for map sync, optimization,
and tracking that accommodate such architectural upgrade. By
fully embracing the on-chip intelligence, edgeSLAM2 simultane-
ously enhances system accuracy and efficiency through software-
hardware co-design. We deploy edgeSLAM2 on an industrial
drone and conduct comprehensive experiments in a large-scale
oil field over three months. The results show that edgeSLAM2
surpasses comparative methods by achieving an 80% reduction
in bandwidth consumption, a 32% improvement in accuracy, and
a 26% reduction in tracking delay.

I. INTRODUCTION

Visual Simultaneous Localization and Mapping (SLAM)
employs video streams to simultaneously construct a 3D envi-
ronmental map and estimate the camera’s pose (i.e., position
and orientation) [1]–[3]. Its real-time functionality, particularly
on mobile devices such as drones and robots, is pivotal for
underpinning an array of intelligent device applications such
as environmental perception, self-state estimation [4]–[7], and
capabilities like drone flight control, obstacle avoidance, and
intelligent interaction [8]–[11].

Visual SLAM’s computational intensity impedes efficient
and accurate operations on lightweight devices such as Micro
Aerial Vehicles (MAV) and smartphones [4], [5]. To enhance
system accuracy and efficiency on mobile, current practice
resorts to edge computing and design a front-end Tracking
with back-end Optimization edge-assisted architecture. Within
this setup, mobile devices focus on lightweight, time-sensitive
tracking tasks, including pose tracking (camera’s pose esti-
mation) and map tracking (new map points and keyframes

TABLE I
EDGE-ASSISTED SLAM SYSTEM COMPARISON

System Bandwidth(MB/s) Accuracy(cm) Latency(ms)

SwarmMap [12] 1.35 13.2±5.3 32.2±6.4

Edge-SLAM [13] 2.99 17.9±5.9 34.3±8.0

edgeSLAM [14] 4.49 11.3±5.1 37.2±10.9

edgeSLAM2 0.27 7.6±2.9 23.7±1.2

generation). Meanwhile, the resource-intensive tasks of local
and global map optimization are offloaded to edge servers.

Such a tracking-optimization decoupled strategy not only
alleviates resource pressures on mobile devices [12]–[14] but
also allows edge servers to centralize and optimize visual
maps from multiple agents, enhancing collaborative efforts for
tasks like cooperative scheduling [15]–[17]. This edge-assisted
paradigm underpins numerous applications, e.g. smart logistics
[18], warehouse sorting [19], and industrial inspection [20].

While existing edge-assisted SLAM systems show promise,
our deployment of these systems on drones for industrial
inspections within a large-scale oil field highlighted several
drawbacks. We find due to the isolation of tracking and opti-
mization, which are originally tightly intertwined in terms of
data dependency, resource allocation, and thread management,
the following challenges arise:

• Map synchronization strains network bandwidth. Real-
time edge-mobile map synchronization allows mobile agents to
access timely, optimized local maps for tracking performance
maintenance [12]. However, this process involves streaming
large volumes of map data (i.e., map points and keyframes) via
wireless links, straining the network. Further, SLAM agents
continually gather new map data in evolving environments,
necessitating ongoing frequent map syncs. Such constant,
voluminous data streaming rapidly saturate the limited and
congested wireless spectrum, inducing significant map update
delays that may result in tracking drift or even loss.

We validate our analysis by measuring the bandwidth usage
of existing edge-assisted SLAM systems in varied industrial
scenarios (§IV). As depicted in Fig. 1a, map sync data
volume gradually outstrips the available network bandwidth
in edgeSLAM [14] and Edge-SLAM [13] systems. While
SwarmMap [12], the most recent work, designs a lighter
map sync framework for reducing data volume in quasi-
static environments, it faces limitations in large-scale, dynamic
scenes such as factories with constant movement. As shown in
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Fig. 1. Limitations of current practice observed in our field study. (a) As synchronization frequency and map scale increase, each agent requires over
4MB/s bandwidth in factory scenarios, >2× that in simpler warehouse scenarios. (b) Current edge-assisted SLAM systems [13] suffer notable map update
delays, leading to substantial localization errors (i.e., exceeding 1.5s and 40cm in the factory). (c) Resource contention arising from map stitching, which
occurs at certain frequencies, induces significant spikes in tracking delay, potentially exceeding 70ms (i.e., less than 15fps).

Fig. 1b, the overcrowded network, in turn, causes significant
map update delays and harms tracking accuracy.

• Map stitching disrupts tracking performance. During map
synchronization, mobile devices need to stitch received edge-
optimized maps with their local ones. Typically, map stitching
and pose tracking are handled in separate threads [13], [14],
using locking to prevent read/write conflicts in the local map
database. However, frequent map stitching and its complex
mobile-edge data fusion operations (e.g., perspective splicing
[15], map points retrieval [5]) extend the database locking
time, which results in unexpected tracking thread interruptions
and further compromises the tracking performance.

We recorded the pose tracking latency for a snapshot of
400 frames (13s duration). As shown in Fig. 1c, although
current systems could achieve an average frame rate of around
30fps (e.g., latency <33.3ms) without map syncs, frequent
(i.e., around every 2s) resource contention induced by map
stitching severely impacts the tracking performance, leaving
room for improvements.

Lessons Learned. Due to the limited computing capacity
of lightweight mobile devices, existing solutions with such
tracking-optimization decoupled architecture have to position
local map optimization on the edge (Fig. 2a). This approach
necessitates frequent mobile-edge map syncs, resulting in (i)
network-side significant bandwidth overhead and (ii) mobile-
side unforeseen commandeering of thread and computational
resources. To render edge-assisted visual SLAM more prac-
tical for drones in challenging and network-limited industrial
environments, it’s crucial to rethink the edge-assisted architec-
ture – by integrating tracking and local map optimization on
mobile (Fig. 2b), we can concurrently elevate system accuracy
and efficiency, while minimizing resource overhead.

Recently, we find two opportunities to enhance the com-
puting capability of lightweight mobile devices for such po-
tential architectural upgrades. On the one hand, the software-
hardware co-design paradigm has been widely adopted for mo-
bile devices. Current innovations employ hardware resources
(e.g., FPGA) to accelerate software algorithms and boost
overall system efficiency. On the other hand, the proliferation
of embedded SoCs (e.g., Xilinx Zynq [21], NVIDIA Tegra
[22]) that offer heterogeneous arithmetic units are enabling
software-hardware co-designs. These two trends propel on-
chip intelligence, empowering lightweight mobile devices to
handle intricate tasks [23]–[25].
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Fig. 2. Edge-assisted SLAM architecture comparison. (a) The tracking-
optimization decoupled architecture necessitates frequent data synchronization
(i.e., map upload every 1s, and local map update every 2s [14]). (b) The
upgraded architecture enables the tightly intertwined tracking and local map
optimization to run concurrently on the mobile client, alleviating the map
synchronization stress (i.e., upload every 10s, update every 40s on average).

Our Work. Motivated by the above challenges and opportu-
nities, we design and implement edgeSLAM2, a fresh edge-
assisted visual SLAM system that re-imagines edge-assisted
architecture by tightly integrating tracking and local map
optimization on mobile. edgeSLAM2 harnesses the hierarchi-
cal and heterogeneous computing units offered by the latest
commercial Zynq SoCs to enhance the computational capacity
of mobile devices, and on this basis, accommodates such
architectural upgrade through software-hardware co-design.
Evaluation results summarized in Table I demonstrate edgeS-
LAM2’s superior performance compared to current practice.

Transforming edge-assisted visual SLAM architecture to
boost edgeSLAM2’s accuracy, efficiency, and reduce network
overhead, poses many challenges that are addressed in this
work: (i) how to re-assign visual SLAM’s functional modules
between mobile and edge to reshape the architecture; (ii) how
to re-design an effective map sync framework to adapt to
the new architecture; and (iii) how to push forward tracking
performance on mobile through software-hardware co-design.
Overall, edgeSLAM2 excels in three aspects:

• On the Architecture front, we redesign task allocation
between mobile and edge. Different from current practice,
the Local Map Optimization module, which is tightly coupled
with Tracking, is loaded to mobile devices. We further extract



a lightweight loop detection module from the global map
optimization and relocate it to mobile to decrease the triggering
frequency and data volume for map synchronization, further
enhancing efficiency (§II).
• On the Algorithm front, we propose a new mobile-edge
map synchronization solution compatible with the upgraded
architecture. We first propose Event-Responsive Map Syn-
chronization, optimizing the timing and frequency of map
synchronization under the new paradigm (§III-B). Then, we
introduce Observation Consistency based Map Streamlining,
minimizing the transmission payload by selectively compress-
ing the necessary map elements (§III-C).
• On the Implementation front, we implement edgeSLAM2
on the latest Zynq UltraScale+ MPSoC platform [21] through
software-hardware co-design. We fully utilize heterogeneous
arithmetic units to enable mobile tasks to run in real time
(§III). Particularly, we propose a Delay Deterministic Tracking
approach, leveraging FPGA and resource isolation strategy
to accelerate some critical modules (e.g., feature extraction
and matching) in tracking and prevent its thread from being
interrupted, to alleviate the tracking delay bottleneck (§III-D).

We deploy edgeSLAM2 on a drone testbed. Comprehensive
experiments are carried out in a large-scale oil field over three
months, covering a variety of scenarios including warehouses,
oil-producing areas, and factories, collecting 188 trajecto-
ries with 182,267 frames. We compare edgeSLAM2 with
three state-of-the-art (SOTA) edge-assisted SLAM systems,
SwarmMap [12], edgeSLAM [14], and Edge-SLAM [13].
Evaluation results show that edgeSLAM2 achieves an average
bandwidth consumption of 0.27MB/s, a localization accuracy
of 7.6cm, and a tracking delay of 23.7ms. This performance
surpasses competing methods by achieving an 80% reduction
in bandwidth consumption, a 32% improvement in accuracy,
and a 26% reduction in tracking delay.

In summary, this paper makes the following contributions.
(1) We design and implement edgeSLAM2, an innovative
system that reshapes the edge-assisted visual SLAM paradigm
by fully embracing on-chip intelligence.
(2) We propose several technologies, spanning event-
responsive map synchronization, observation consistency
based map streamlining, and delay deterministic tracking, in
edgeSLAM2 through software and hardware co-design, to
enable mobile devices to obtain accurate pose in real-time with
minimal bandwidth consumption.
(3) We fully implement edgeSLAM2 and deploy it on an
industrial inspection drone. Our three-month pilot study in a
large-scale oil field demonstrates that edgeSLAM2 makes a
great process towards fortifying edge-assisted visual SLAM
into a fully practical system for wide deployment.

II. SYSTEM OVERVIEW

We first briefly introduce the existing tracking-optimization
decoupled architecture. Then, we detail the upgraded architec-
ture adopted by edgeSLAM2.

A. Existing Edge-Assisted Visual SLAM
An edge-assisted visual SLAM system can be abstracted

as mobile, edge, and network, three layers [12]. The tasks
allocation among them can be summarized as below.
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Fig. 3. edgeSLAM2 Overview

Front-End Tracking on Mobile. A mobile device receives
video stream input, extracts feature points from each frame,
and estimates the camera pose (i.e., pose tracking) by correlat-
ing these features with a pre-constructed local map (i.e., a set
of 3D map points and keyframes1). Moreover, new map points
are created and added to the local map (i.e., map tracking),
aiding the following tracking process.

Back-End Optimization on Edge. On an edge server, a global
map is maintained and persistently fine-tuned through both
local map optimization and global map optimization. Specifi-
cally, local Bundle Adjustment (local BA [26]) is employed to
optimize the uploaded local map, enhancing the accuracy of
map point locations and keyframe poses. Simultaneously, loop
closing [2] combined with global BA is leveraged to globally
optimize the overall map and trajectory.

Map Synchronization through Network. Newly generated
map points and keyframes (from map tracking) on mobile
devices are uploaded to the edge server for either local or
global optimization. The optimized map, in turn, is transmitted
back to the mobile device for refining the local map.

B. edgeSLAM2 Overview

edgeSLAM2 upgrades the tracking-optimization decoupled
architecture (Fig. 2a) by transferring the local map opti-
mization from edge to mobile. Such consolidation maintains
data, resource, and thread dependencies between tracking and
local map optimization as shown in Fig. 2b, resulting in
reduced bandwidth overhead for map sync and improved pose
tracking performance. edgeSLAM2’s architecture is outlined
in Fig. 3. From a top perspective, edgeSLAM2 shares the
similar system abstraction of mobile, edge, and network layers,
and is built upon the latest ORB-SLAM3 [2]. We delve
into the specific workflow in this re-imagined edge-assisted
visual SLAM architecture, and summarize the novel functional

1Keyframes are a subset of frames that capture essential data like camera
position, map point observations, and the visibility relationships with other
keyframes.
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Fig. 4. An exhibition of the Zynq UltraScale+ MPSoC (left), and the edgeSLAM2’s on-chip architecture (right).

modules designed to support architectural upgrade across three
layers.
•On the Mobile layer, edgeSLAM2 applies a software-
hardware co-design on a heterogeneous computing chip
(§III-A). It integrates FPGA-adapted essential algorithms and
resource isolation for delay deterministic tracking (§III-D),
while retaining most generic computing resources for local
map optimization. Additionally, an initial loop recognition
is conducted by a lightweight loop detection module at the
mobile side.
•On the Edge layer, upon receipt of a loop detection signal
from the mobile client, edgeSLAM2 performs thorough loop
verification, followed by triggering the resource-intensive tasks
of loop correction and global optimization.
•On the Network layer, edgeSLAM2 refrains from frequent
uploads of newly generated maps. Instead, it implements
an event-responsive map synchronization strategy (§III-B) to
refine the timing and frequency of synchronization. To further
enhance efficiency, an observation consistency based map
streamlining approach (§III-C) is employed for effective map
compression before synchronization.

III. SOFTWARE-HARDWARE CO-DESIGN OF EDGESLAM2

A. edgeSLAM2’s On-Chip Architecture
We utilize the most recent iteration of the commercially

available Zynq UltraScale+ MPSoC (hereafter referred to as
MPSoC), a heterogeneous computing platform pioneered by
Xilinx [21], to implement the mobile side of edgeSLAM2 via
software-hardware co-design. We initially provide a succinct
overview of the MPSoC platform, following which we delin-
eate the on-chip architecture of edgeSLAM2.
Zynq Platform Primer. Fig. 4 depicts the hierarchical com-
putational resources offered by the MPSoC. As illustrated,
the MPSoC is comprised of two modules: a Processing
System (PS), purposed for software development, and User-
Programmable Logic (PL), intended for hardware design. The
PS is equipped with a Cortex-A53 quad-core processor (4*A-
Core) and a Cortex-R5 dual-core processor (2*R-Core). Typi-
cally, the Linux OS (e.g., PetaLinux, Debian) is employed for
centralizing the four A-Cores, whereas a Real-Time Operating
System (RTOS) is used for scheduling the two R-Cores,
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Fig. 5. A typical on-chip workflow of edgeSLAM2.

designed specifically for real-time applications. On the other
hand, the PL offers programmable logic blocks, advanced dig-
ital signal processing (DSP), and other resources specifically
designed for hardware development and customization.
Architecture. The on-chip architecture of edgeSLAM2, as
depicted in Fig. 4, is deftly integrated with the computa-
tional capabilities of MPSoC. Firstly, Tracking is accomplished
through the collaboration of PS and PL: the PL is responsible
for executing repetitive and parallelizable modules such as
feature extraction and matching, while the dedicated #A1
serves as the host, performing control and optimization tasks.

edgeSLAM2 allocates most of the general-purpose compu-
tational resources to Local Mapping on #A2-A4 in PS, a pro-
cess that is resource-intensive involving both map generation
and local map optimization. Furthermore, Lightweight Loop
Detection, a non-latency-sensitive task, shares #A2-A4 with
Local Mapping under the management of the OS.

We employ a map synchronization controller on #R1. This
controller primarily serves two functions: leveraging the map
compression encoder provided by the PL for real-time map
compression (§III-C), and executing map transmission based
on the specified synchronization strategy (§III-B).

Lastly, the #R2 hosts the real-time drone control module,
receives pose information from the Tracking module (#A1),
plans the flight path, and transmits control signals through the
General Purpose Input/Output (GPIO).
Workflow. The workflow of edgeSLAM2, demonstrated in
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Fig. 5, aligns with a typical SLAM pipeline and emphasizes
both parallelism and pipelining. Upon receipt of an input
(e.g., Nth frame), the Tracking module employs a specific
hardware accelerator (PL) through an Advanced eXtensible
Interface (AXI) for feature extraction and matching, followed
by pose estimation and optimization on #A1. The estimated
pose information is then passed to the flight control module
(#R2) for downstream tasks. If the Nth frame is selected as a
keyframe, two operations run concurrently: (i) Local Mapping
on #A2-A4 for local map generation and optimization; (ii)
Lightweight Loop Detection for initial loop identification.
Upon loop detection, map streamlining on #R1, in conjunction
with the compression encoder (PL), compresses the yet-to-be-
synchronized map. This streamlined map is then dispatched to
the edge server for further verification and global optimization.
Additionally, in the case of Tracking Lost, the Relocalization
module on #A1 utilizes the Bag-of-Words matching module
(PL) to recalibrate the current location.

B. Event-Responsive Map Synchronization

To determine the optimal timing for map synchronization,
we monitor and respond to specific events within the map.
This approach aims to: (i) ensure timely execution of loop
detection and global optimization, maintaining the quality
of local maps; (ii) facilitate the swift sharing of locally
constructed maps with other clients via centralized edge server,
promoting cooperative tasks; and (iii) minimize redundant
data transfers, maximizing synchronization efficiency. Moti-
vated by these objectives, we react to three typical map events
for synchronization, as shown in Fig. 6.

Event #1: Progressive Cross-Tier Loop Detection. We
employ a lightweight loop detection module on the mobile
client to preliminarily identify potential loops. This module
uses Bag-of-Words vector matching for initial keyframe com-
parison, pinpointing similar keyframes that may indicate a
loop. The subsequent resource-intensive tasks, such as full
loop detection, loop correction, and global map optimization,
are offloaded to the edge server. Upon detecting a loop, the
client uploads any unsynchronized map (Event #1). The edge
server then confirms the loop. The subsequent actions depend
on the type of loop closure: for an intra-map loop closure
(i.e., revisiting a location within a single map), loop correction
and global optimization are promptly initiated. On the other
hand, for an inter-map loop closure (i.e., detecting overlap
between two maps), the maps are first merged before global
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optimization. Once the optimization is complete, the updated
map is synced back to the mobile, replacing the local map.

Event #2: Submap Stabilization. In the absence of other
map events, we periodically upload stable map sections for
sharing with other clients. In SLAM, active map elements like
the current frame, its co-visible keyframes, and their observed
map points, are subject to changes during map optimization.
To identify stable sections, we employ a Least Recently Used
(LRU) strategy [27]. We maintain a queue of keyframes,
shifting any keyframe to the queue’s front when it’s modified
during optimization. Periodically, we shift the “cooled down”
keyframes from the rear of the queue to the stable submap.
We upload such a submap when it contains more than 20
keyframes (Event #2). This approach prevents the redundant
uploading of map elements that are prone to frequent changes.

Event #3: New Active Map Generation. When tracking is
lost and relocalization fails, the system restarts tracking and
activates a new map to support subsequent tracking. Concur-
rently, the original local map switches to a non-active state.
As this non-active map no longer participates in local map
optimization, we upload any unsynchronized map elements it
contains (Event #3). At the edge server, the non-active maps
are preserved until an inter-map loop closure event occurs, at
which point they are reintegrated through map fusion.

C. Observation Consistency based Map Streamlining

In visual SLAM, each map point is typically observed across
multiple keyframes, with each observation represented by a
feature descriptor (i.e., binary string). These corresponding
observations, when matched and triangulated [28], yield the
associated map point, as illustrated in Fig. 7. By utilizing the
observation similarity from different keyframes for the same
map point, we (i) compress the feature descriptors, which
constitute the largest proportion of storage, and (ii) selectively
retain the most informative map points.

Observation Compression Coding. Upon identifying a
submap for upload, the compression process begins with the
removal of features unassociated with any map point, as these
are generally irrelevant for map optimization or cooperative
mapping. Next, we apply compression encoding to the re-
maining observation descriptors. Similar to [29], we create
a minimum spanning tree where each observation descriptor
serves as a node, and the edges between them are weighted
according to their minimum Hamming distances. In this tree,
we designate the map point as the root node, as illustrated
in Fig. 7. We traverse the spanning tree iteratively, calculate
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Fig. 8. Adaptation of feature extraction on PL. (a) This highly parallelized
module receives images from AXI and outputs extracted features (i.e.,
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descriptor computing are performed concurrently, followed by feature filtering.

the residuals between neighboring descriptors, and employ
arithmetic coding to compress these residuals.

The effectiveness of this compression technique is based
on two factors. First, the minimal residuals yielded by the
spanning tree, when combined with arithmetic coding, en-
able efficient map compression, effectively mitigating the
redundancy among similar observations. Second, our event-
responsive map synchronization strategy (§III-B) facilitates the
upload of sufficiently large maps, which assures the scale of
the spanning tree (i.e., a map point with adequate observa-
tions), thereby enhancing compression efficiency. Additionally,
we employ a Map Compression Encoder on the PL to alleviate
the computational costs associated with Hamming distance
calculation and arithmetic encoding [30].

Map Point Trimming. We further utilize observation consis-
tency to selectively preserve high-quality map points, ensuring
a balance between map quality and compression efficiency.
Given a map point p to be synchronized. The number of its
observations is Np, and its total encoded length (including
the map point itself and compressed observations) is Lp. We
denote the weight of p as Wp = (Nmax − Np) ∗ Lp, where
Nmax corresponds to the maximum number of observations
linked to any map point. We prioritize maintaining map points
with smaller Wp, i.e., those with more observations and robust
observation consistency. These map points are typically more
stable and exhibit higher compressibility. Additionally, follow-
ing the map point trimming, if a certain keyframe observes
fewer than 40 map points, we gradually restore the associated
map points based on their weights until every keyframe has at
least 40 effective observations, ensuring the localizability of
keyframes.

D. Delay Deterministic Tracking

In the critical Tracking module in edgeSLAM2, we lever-
age the heterogeneous computational resources on-chip to

Algorithm 1: Adaptation of Matching Routine on PL

Input: Feature Descriptors: Df = {Df},Dm = {Dm}
Output: Matching Results: M

1 for each Df in Df do // k-Way Loop Unroll
2 initialize Mlocal = ∅, dismin = +∞;
3 for each Dm in Dm do
4 dis = Hamming(Df , Dm); // Parallel

XOR ports + Adder tree
5 if dis < dismin then
6 dismin = dis; Mf = Dm;
7 end
8 end
9 if dismin < τthreshold then

10 Mlocal.add([Df ,Mf ]);
11 end
12 end
13 M = ParallelReduction({Mlocal});

(i) effectively accelerate time-consuming algorithmic bottle-
necks in tracking, ensuring real-time performance, and (ii)
maintain smooth tracking operations, unhindered by resource
contention, guaranteeing tracking determinism.

Hardware Adaptation of Tracking. In the tracking process,
feature extraction and matching constitute the computational
bottlenecks [31]. Specifically, during feature extraction, ORB
features [32] are obtained from the input image via a com-
bination of FAST keypoint and BRIEF descriptor, and gain
rotational and scale invariance through orientation adjustment
and pyramid creation, respectively. During feature matching,
each detected feature in the current frame seeks to match with
a 3D map point in the local map, based on the Hamming
distances between their BRIEF descriptors.

We restructure the ORB feature extraction algorithm to align
with hardware processing capabilities. As shown in Fig. 8a, we
downsample the input image and conduct parallel processing
on the generated 4-layer pyramid. For each layer, we first
detect keypoints within the image, then calculate the descrip-
tors of these keypoints, and finally filter the optimal feature
points based on Harris scores [33] through a max heap. This
rescheduled approach, as opposed to the conventional CPU
workflow of filtering keypoints before calculating descriptors,
allows for simultaneous execution of keypoint detection and
descriptor calculation, as depicted in Fig. 8b. This efficient
pipeline significantly reduces hardware idle periods, thereby
optimizing feature extraction latency.

Our adaptation for hardware also extends to feature match-
ing. In Algorithm 1, we detail our strategy for parallelization
and the associated hardware design. Specifically, the input
includes two sets of descriptors, Df and Dm, derived from
the current frame and local map, respectively. By utilizing
a 4-way loop unroll, the algorithm in parallel determines the
optimal match in Dm for every descriptor in Df (Line 1). The
similarity between the two descriptors is gauged using Ham-
ming distance via the Hamming function (Line 3), a pipeline
structure formed from parallel XOR ports and a pipelined
adder tree, capable of executing a distance computation in
every clock cycle. We then track the descriptor in Dm nearest
to Df (Line 4–7) and perform a final evaluation against the
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matching threshold (Line 8–11). At Line 13, we use parallel
reduction [34] for concurrent updates to M. Similarly, to
accelerate the relocalization process, we also implement a
hardware-adapted Bag-of-Words matcher, operating under a
parallel routine akin to the above feature matching strategy.

Resource Isolation. Ensuring uninterrupted and timely ex-
ecution of the time-sensitive Tracking thread on the CPU
core is challenging due to the concurrent execution of other
background threads, such as Local Mapping and Lightweight
loop detection, controlled by the same operating system.
This competition for computational resources can introduce
additional end-to-end latency. To minimize such disturbances,
we dedicate one A-Core exclusively for Tracking. In our
implementation, we realize A-Core isolation by building the
Linux OS with the boot parameter isolcpus=<cpu #A1>.

Furthermore, simultaneous map access by both Tracking and
Optimization can introduce contention, subsequently increas-
ing tracking latency. To mitigate these effects, we adopt a
double map buffering strategy [35]. This methodology utilizes
two dedicated memory reservoirs: one hosting the current
map necessary for tracking, and another storing the map
being updated through optimization. Upon each optimization
completion, the refreshed map is shifted to its corresponding
buffer, allowing the tracking thread to transition smoothly to
this updated map. This approach ensures uninterrupted access
and freshness of map data for the tracking process.

IV. EVALUATION

A. Experimental Methodology

Field Studies. We incorporate edgeSLAM2 into the ArduPilot
APM flight controller and deploy it on an AMOVLAB P450-
NX drone. We conduct a field study spanning three months,
delivering real-time localization services for industrial inspec-
tion tasks in oil fields. We select three representative scenarios
for detailed system performance evaluation, collecting 188
trajectories with 182,267 frames, as summarized in Table
II. The warehouse represents a typical indoor environment,
while the oil-producing area and factory exemplify complex
industrial outdoor settings. The drone communicates with the
edge node via 2.4 GHz WiFi in indoor environments, while in
outdoor settings, it switches to a mesh network2. The edge side
of edgeSLAM2 is deployed on an Nvidia Jetson AGX Xavier
edge node, with its power consumption capped at 30W, within
the range of available power supply in industrial settings.

2In our measurements, the maximum throughput in the outdoor mesh and
indoor WiFi networks is 14.3MB/s and 26.8MB/s, respectively.

TABLE II
DETAILS OF DATA COLLECTION IN DIFFERENT SCENARIOS

Scene Type
No.of Path

(Total)

No.of Path

(with Loop)

No.of

Frames

Flight Speed

(Avg. m/s)

Warehouse 36 32 34,900 0.6

Oil-Producing Area 71 56 63,012 4.8

Factory 81 68 84,355 7.0

Metrics and Ground Truth. To evaluate system overhead,
we measure the bandwidth requirement (in MB/s), defined
as the average volume of data transferred per second. We
assess the real-time performance by recording the tracking
latency, denoting the time from image receipt to pose output.
The localization accuracy is determined using the Absolute
Trajectory Error (ATE, in cm), a gold standard in SLAM
algorithm evaluation [36]. The ground truth for indoor local-
ization is obtained through Opti-Track [37], whereas Real-
Time Kinematic (RTK) is utilized for outdoor environments.
Baselines. We compare edgeSLAM2 with three SOTA edge-
assisted SLAM systems, SwarmMap [12], Edge-SLAM [13],
and edgeSLAM [14]. Despite these systems not being designed
for the Zynq MPSoC, we ensure a fair comparison by deploy-
ing them on the same platform. In our setup, we deploy the
Petalinux OS on the 4*A-Core and utilize OpenAMP for con-
trolling the 2*R-Core, fully exploiting the general computing
resources [38]. Beyond this distinction, they operate under the
same edge server and network conditions as edgeSLAM2.

B. Overall Performance

1) Bandwidth Requirement: We first evaluate the band-
width requirement of edgeSLAM2 and the three baselines
in different scenarios. As shown in Fig. 9a, edgeSLAM2
requires an average bandwidth of 0.23MB/s, 0.27MB/s, and
0.43MB/s in the warehouse, oil-producing area, and factory
settings, respectively. Compared to the baselines, edgeSLAM2
achieves a bandwidth reduction of at least 81.3%, 80.2%, and
89.4% respectively. Such performance enhancement is credited
to the implementation of the upgraded edge-assisted SLAM
paradigm, paired with (i) event-responsive map synchroniza-
tion and (ii) observation consistency based map streamlining.

2) Localization Accuracy: Fig. 9b depicts the localization
performance of edgeSLAM2 and comparative systems in dif-
ferent settings. The average localization error of edgeSLAM2
is 5.3cm, 7.6cm, and 11.5cm in the warehouse, oil-producing
field, and factory, respectively. edgeSLAM2 outperforms three
baselines across all scenarios, particularly in the challenging
factory setting, which is characterized by poor network quality
and large-scale maps. Specifically, edgeSLAM2 outperforms
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SwarmMap, Edge-SLAM, and edgeSLAM by 48.5%, 57.9%,
and 22.6%, respectively. This superiority can be attributed
to the innovative architecture that re-couples tracking and
local map optimization, which effectively mitigates potential
performance degradation caused by map update delay.

3) Tracking Latency: We also evaluate the tracking latency
of edgeSLAM2 with the baselines. As shown in Fig. 9c,
edgeSLAM2 achieved an average latency of 23.7ms and
24.6ms in the oil-producing area and factory, outperforming
baselines by at least 26.3% and 44.8%. Furthermore, the
corresponding 95th percentile tracking latency in these three
settings are 24.4ms, 25.2ms, and 26.0ms, respectively, which
is decreased by >53.4%, >41.4%, and >62.1% compared to
the baselines. The above results underline the effectiveness
of the delay deterministic tracking strategy in enhancing both
the real-time and deterministic capabilities of edgeSLAM2,
facilitated by the software-hardware co-design approach.

C. Ablation Study

We conduct several experiments within the challenging
factory setting to evaluate the effectiveness of edgeSLAM2’s
architecture, implementation, and algorithms.

1) Effectiveness of Architecture: To evaluate the effec-
tiveness of the upgraded edge-assisted SLAM architecture,
we compare edgeSLAM2 with two different architectural
baselines on the Zynq platform: ORB-SLAM3, where all
tasks run entirely on the mobile client with only the final
constructed map being synced, and SwarmMap, a recent
method that adheres to the tracking-optimization decoupled
approach. As shown in Fig. 10a, ORB-SLAM3 syncs mini-
mal data but suffers substantial accuracy degradation due to
resource exhaustion from concurrent optimization operations.
In comparison, edgeSLAM2 significantly reduces localization
error and bandwidth usage by 49.3% and 89.5%, respectively,

TABLE III
DELAY COMPARISON ACROSS DIFFERENT MODULES

System Tracking
Local Map Update Loop

Closing
Optimization Synchronization

Edge-SLAM 44.9ms 0.24s 1.35s 6.3s
edgeSLAM2 24.6ms 0.56s - 7.1s

TABLE IV
ENERGY EFFICIENCY COMPARISON

Zynq MPSoC Jetson TX2 Intel i7-9700

Frame Rate (fps) 42 14 38
Power (W ) 4.6 6.8 52

Energy/Frame (mJ) 108 485 1368

compared to SwarmMap. These results underscore the pivotal
role of the upgraded edge-assisted architecture in edgeSLAM2.

2) Effectiveness of Implementation: We assess the effec-
tiveness of our implementation by deploying edgeSLAM2 on
Jetson TX2 and Intel i7-9700 processors, denoted as Baseline
I and Baseline II, respectively. As shown in Fig. 10b, owing
to the superior processing capabilities of i7-9700, Baseline II
surpasses Baseline I in both accuracy and latency aspects. On
the other hand, edgeSLAM2 showcases a substantial reduction
in the 95th percentile tracking latency by 18.8%, compared to
Baseline II, incurring only a minimal decrease in localization
accuracy by 0.95cm due to local map optimization delay.

We further evaluate the implementation of Tracking in
edgeSLAM2 (§III-D). As shown in Fig. 10c, employing hard-
ware adaptation on PL yields an average latency reduction
of 68.9%. Furthermore, by applying both hardware adaptation
and resource isolation strategies, the 95th percentile track-
ing latency of edgeSLAM2 is further reduced by 8.5ms.
The above results manifest the effectiveness of the software-
hardware co-design paradigm implemented on Zynq MPSoC.

D. Efficiency Study

We analyze the latency of each component in Tracking.
As shown in Fig. 11, during tracking, edgeSLAM2 averages
6.7ms, 3.1ms, 5.8ms, and 8.5ms for feature extraction,
feature matching, pose estimation, and pose optimization,
respectively. And it spends 15ms on relocalization at Frame
#25 when tracking is lost. This rapid execution of crucial
steps is thanks to hardware adaptation and resource isolation
(§III-D).

Table III exhibits the end-to-end latency of three critical
modules: Tracking, Local Map Update, and Loop Closing.
Although edgeSLAM2’s optimization latency is higher than
Edge-SLAM due to its deployment on lightweight devices,



Edge-SLAM takes a significant 1.35s for map synchroniza-
tion, including on-network map transmission and on-mobile
map reconstruction. In addition, the loop closing process of
edgeSLAM2 is slightly slower (by less than 1s) due to the
need for transmitting yet-to-be-synchronized submaps upon
loop detection on the mobile client.

In terms of energy consumption, we deploy edgeSLAM2
on Zynq MPSoC, Jetson TX2, and Intel i7-9700, and analyze
the energy required per frame. As indicated in Table IV,
Zynq MPSoC and Jetson TX2, compared to high-performance
processor i7-9700, consume less power (<10W ), making
them suitable for deployment on lightweight mobile devices.
Furthermore, due to the exceptional real-time performance of
edgeSLAM2, when adapted to the Zynq MPSoC, it reduces
the energy required per frame by 77% and 92% compared to
the Jetson TX2 and i7-9700, respectively.

V. RELATED WORK

Visual SLAM. Visual SLAM remains a cornerstone of
robotics and mobile systems research, with its roots extending
back several decades [6]. It tackles the dual tasks of mapping
an unexplored environment and tracking the mobile device
within it simultaneously. The most common sensors employed
are monocular cameras [26], stereo cameras [39], and RGB-D
cameras [40]. Some of the well-known visual SLAM systems
include PTAM [41], LSD-SLAM [42], and ORB-SLAM [1],
[2], [26], among which, ORB-SLAM3 [2] stands out as
a versatile open-source system, covering monocular, stereo,
and visual-inertial solutions. Although edgeSLAM2 is imple-
mented based on the monocular version of ORB-SLAM3, our
universal optimization of key modules for on-chip implemen-
tation allows seamless adaptation to other vision-centric multi-
sensor SLAM approaches.

Edge-assisted real-time SLAM. Recent research [12]–[14],
[43]–[45] seeks to enable real-time implementation of visual
SLAM on mobile devices through edge offloading. edgeSLAM
[14] and Edge-SLAM [13] reallocate the resource-intensive
optimization to an edge server, retaining only the lighter
tracking module on the mobile client. SwarmMap [12] builds
upon this concept and introduces map backbone profiling and
synchronization strategies for effective multi-agent operations.
However, this segregation of the inherently intertwined track-
ing and optimization tasks limits their performance in multiple
aspects (§I). In an alternative approach, AdaptSLAM [45]
strives to execute both tracking and local mapping on the
mobile client by applying an adaptive mapping strategy in
response to resource constraints. Its effectiveness, however, is
confined to high-end devices (e.g., Intel i7-9700K). Diverging
from these methodologies, edgeSLAM2 reshapes the edge-
assisted SLAM paradigm by hardware-software co-design,
facilitating real-time, accurate visual SLAM on lightweight
mobile devices, even in network-constrained conditions.

Software-hardware co-design for SLAM. The rise of hard-
ware and software co-design has empowered the paralleliz-
able and computationally-intensive SLAM [31], [46]–[50].
Innovations like eSLAM [47] and ac2SLAM [48] have de-
veloped FPGA-centric acceleration methods specifically for
ORB feature extraction and matching. π-BA [49], on the other

hand, has devised a hardware-friendly differentiation method
to speed up the BA optimization. These methods, while explor-
ing SLAM performance enhancement via dedicated hardware
design, fall short of offering fully deployable systems for
real-world environments. Addressing this gap, edgeSLAM2
distinguishes itself by harnessing the heterogeneous computing
platform in conjunction with edge-assisted mechanisms. It
systematically identifies and abstracts key bottlenecks in the
SLAM algorithm and, building on the newly defined edge-
assisted SLAM paradigm, introduces a comprehensive hard-
ware and software co-design strategy (§III).

VI. CONCLUSION

We have presented the design and implementation of edgeS-
LAM2, an innovative edge-assisted visual SLAM system that
reshapes the existing Tracking-Optimization decoupled edge-
assisted paradigm by transferring the local map optimization
module from edge to mobile. edgeSLAM2 (i) exploits the
advanced, hierarchical computing units of the latest Zynq
SoCs, enhancing mobile devices’ computational capacity,
which accommodates this architectural upgrade; and (ii) pro-
poses several technologies to be compatible with the upgraded
architecture through the software-hardware co-design. On this
basis, edgeSLAM2 enables mobile devices to achieve real-
time, accurate localization with minimized bandwidth con-
sumption. Extensive evaluation in real-world environments
across 3 months demonstrates its superior performance.

ACKNOWLEDGMENT

We sincerely thank the MobiSense group and the anony-
mous reviewers for their insightful comments. This work is
supported in part by the National Key Research Plan under
grant No. 2021YFB2900100, the NSFC under grant No.
62372265, No. 62302254. No. 62332016, No. 62202262, and
No. 62272462.

REFERENCES

[1] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE transactions
on robotics, 2017.

[2] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D. Tardós,
“Orb-slam3: An accurate open-source library for visual, visual–inertial,
and multimap slam,” IEEE Transactions on Robotics, 2021.

[3] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual slam algorithms: A
survey from 2010 to 2016,” IPSJ Transactions on Computer Vision and
Applications, 2017.

[4] J. Xu, H. Cao, D. Li, K. Huang, C. Qian, L. Shangguan, and Z. Yang,
“Edge assisted mobile semantic visual slam,” in IEEE INFOCOM 2020-
IEEE Conference on computer communications, 2020.

[5] A. J. Ben Ali, Z. S. Hashemifar, and K. Dantu, “Edge-slam: Edge-
assisted visual simultaneous localization and mapping,” in Proceedings
of the 18th International Conference on Mobile Systems, Applications,
and Services, 2020.

[6] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on robotics, 2016.

[7] M. R. U. Saputra, A. Markham, and N. Trigoni, “Visual slam and
structure from motion in dynamic environments: A survey,” ACM
Computing Surveys (CSUR), 2018.

[8] L. von Stumberg, V. Usenko, J. Engel, J. Stückler, and D. Cremers,
“From monocular slam to autonomous drone exploration,” in 2017
European Conference on Mobile Robots (ECMR), 2017.

[9] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular
visual-inertial state estimator,” IEEE Transactions on Robotics, 2018.



[10] L. He, N. Aouf, J. F. Whidborne, and B. Song, “Integrated moment-
based lgmd and deep reinforcement learning for uav obstacle avoidance,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020.

[11] L. Liu and M. Gruteser, “Edgesharing: Edge assisted real-time localiza-
tion and object sharing in urban streets,” in IEEE INFOCOM 2021-IEEE
Conference on Computer Communications, 2021.

[12] J. Xu, H. Cao, Z. Yang, L. Shangguan, J. Zhang, X. He, and Y. Liu,
“{SwarmMap}: Scaling up real-time collaborative visual {SLAM} at
the edge,” in 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), 2022.

[13] A. J. Ben Ali, M. Kouroshli, S. Semenova, Z. S. Hashemifar, S. Y.
Ko, and K. Dantu, “Edge-slam: Edge-assisted visual simultaneous lo-
calization and mapping,” ACM Transactions on Embedded Computing
Systems, 2022.

[14] H. Cao, J. Xu, D. Li, L. Shangguan, Y. Liu, and Z. Yang, “Edge assisted
mobile semantic visual slam,” IEEE Transactions on Mobile Computing,
2022.

[15] F. Ahmad, H. Qiu, R. Eells, F. Bai, and R. Govindan, “{CarMap}: Fast
3d feature map updates for automobiles,” in 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), 2020.

[16] P. Schmuck and M. Chli, “Ccm-slam: Robust and efficient centralized
collaborative monocular simultaneous localization and mapping for
robotic teams,” Journal of Field Robotics, 2019.

[17] ——, “Multi-uav collaborative monocular slam,” in 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2017.

[18] FIXAR, “Fully Autonomous VTOL Drone for Last-Mile Delivery,”
https://fixar.pro/last-mile-delivery/, 2023.

[19] wired.com, “Inside the Amazon Warehouse Where Humans and Ma-
chines Become One,” https://www.wired.com/story/amazon-warehouse-
robots/, 2019.

[20] Heliguy, “DJI Enterprise’s Complete Guide to Drone Inspections Based
on Best Use Cases,” https://enterprise-insights.dji.com/blog/complete-
guide-to-drone-inspections, 2021.

[21] X. Inc., “Zynq UltraScale+ MPSoC,” https://www.xilinx.com/products/
silicon-devices/soc/zynq-ultrascale-mpsoc.html, 2023.

[22] NVIDIA, “NVIDIA Tegra K1 Series Processors,” https:
//developer.nvidia.com/embedded/buy/tegra-k1-processor, 2023.

[23] N. Pham, H. Jia, M. Tran, T. Dinh, N. Bui, Y. Kwon, D. Ma, P. Nguyen,
C. Mascolo, and T. Vu, “Pros: an efficient pattern-driven compressive
sensing framework for low-power biopotential-based wearables with
on-chip intelligence,” in Proceedings of the 28th Annual International
Conference on Mobile Computing And Networking, 2022.

[24] Z. Wang, J. Xu, X. Wang, X. Zhuge, X. He, and Z. Yang, “Industrial
knee-jerk: In-network simultaneous planning and control on a tsn
switch,” in Proceedings of the 21st Annual International Conference
on Mobile Systems, Applications and Services, 2023.

[25] F. Yu, Y. Wu, S. Ma, M. Xu, H. Li, H. Qu, C. Song, T. Wang, R. Zhao,
and L. Shi, “Brain-inspired multimodal hybrid neural network for robot
place recognition,” Science Robotics, 2023.

[26] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile
and accurate monocular slam system,” IEEE transactions on robotics,
2015.

[27] K. Konolige and J. Bowman, “Towards lifelong visual maps,” in 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2009.

[28] R. I. Hartley and P. Sturm, “Triangulation,” Computer vision and image
understanding, 1997.

[29] D. Van Opdenbosch, T. Aykut, N. Alt, and E. Steinbach, “Efficient
map compression for collaborative visual slam,” in 2018 IEEE winter
conference on applications of computer vision (WACV), 2018.
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